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ABSTRACT 

A one-dimensional lattice of equimass particles coupled to nearest neighbors by 
nonlinear “linear-plus-quadratic” force laws is excited with initial conditions for which 
alternate masses are displaced along two smooth curves. This results in an interaction 
between “acoustic,” low-frequency motions and “optical,” high-frequency motions. A 
continuum description in terms of a pair of coupled partial differential equations i! 
introduced and analytical solutions obtained are found to agree quantitatively with 
small-amplitude, short-time, optical-acoustic interactions observed in numerical solutions 
of the lattice equations. Hence the lattice or discretization phenomenon known as 
“aliasing” (coupling of optical energies to acoustic energies) can be treated analytically 
by a continuum description if the energies involved are small. As the strength of the 
initial amplitudes is increased, this description in terms of two smooth curves becomes 
invalid, and “three-curve” states appear after a short time. A further increase in the non- 
linearity results in a rapid cascade of energy across the entire modal energy spectrum. 
For the times considered, however, we fail to attain complete equipartition of the spectral 
energies. Instead, very regular features such as one-, two-, three-, and higher-curve 
states are observed to occupy a large fraction of the lattice length and are preserved as 
they propagate along and interact with each other. 

I. INTRODUCTION 

In this paper we consider a one-dimensional anharmonic lattice consisting of 
N > 1 discrete, equimass particles per unit interval interacting with nearest 
neighbors only, and whose Hamiltonian is 

1 Parts of this paper were presented at the International Congress of Mathematicians, Moscow, 
August 1966. 
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Here y, denotes the displacement of particle n, w2 = K/m, K is a “linear” spring 
constant, m is the constant mass of each particle, a: > 0 is a measure of the non- 
linearity in the corresponding equations of motion, and a dot denotes time 
differentiation. We have restricted ourselves to a nonlinear interaction potential 
energy of the cubic type in (1) (that is, a linear-plus-quadratic force law), but the 
following approach is applicable to any lattice having short-range forces. This 
system provides a simple model for treating nonlinear wave propagation in 
discrete media such as solids [I] and plasmas [2-4]. In fact, we may think of the 
lattice as a discretized representation of a continuum and thus view some of the 
phenomena as resulting from discretization; that is, the response of the system 
to short wavelength excitations. 

Of the wide class of motions available to the lattice, we distinguish between 
two basically different types, combinations of which can be excited by appropriate 
choice of the initial conditions y,(O),j,(O). By “acoustic” or low-frequency 
motions of the lattice, we denote time evolutionary situations in which all particle 
displacements yn remain on a single smooth curve y(x, t). “Optical” or high- 
frequency motions will be referred to when alternate particles move on IWO 
distinct, smooth curves w(x, t) and z(x, t). If we may assume that nonlinearities 
cause the optical states to interact only with the acoustic states (and we take N 
large), then we should be able to describe the lattice motion in terms of com- 
binations of the two-curve states, w and z. 

When the nonlinear forces are not too strong and in those cases where we 
impose fixed or periodic boundary conditions, another representation of the 
dynamics is given in terms of “linear” Fourier modal energies [Sj. Acoustic 
motions [6, 71 then correspond to energy residing in the low frequency linear 
modes, and their basic property is wave propagation at the “sound speed” of the 
linear lattice. Optical motions correspond to energy in the highest frequency 
linear modes, and their basic property is high frequency vibration at the lattice 
frequency, w/n. The modal representation, although well known to physicists, 
has rarely provided us with the basic understanding necessary for a proper 
analytical description of the dynamics. However, some of the results are sum- 
marized by presenting the modal energies vs time (“half” the information since 
the phase is omitted) because they do provide an alternate view of the dynamics. 

Earlier treatments of similar lattices [8-141 have focused attention on long 
wavelength or acoustic excitations of this system, as first studied by Fermi, Pasta, 
and Ulam [5]. Solving initial value problems, starting with only the lowest linear 
mode, they observed that only the lowest linear modes of the lattice spectrum 
were excited. M. Kruskal and one of the authors succeeded in describing acoustic 
phenomena in terms of a continuum description of the lattice [l, 41. In particular, 
for progressive waves on one characteristic, the Korteweg-de Vries equation, 
a third-order nonlinear partial differential equation, provides a long-time, uniform 
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asymptotic description of acoustic motions and predicts the near recurrence of 
sinusoida initial states, which Fermi, Pasta, and Ulam observed for (1). 

In the present paper we excite the optical modes of the lattice by a proper 
choice of initial conditions. In situations where random or well-mixed states of 
the lattice are present, optical excitations in the spectrum will be an important 
feature, so the present work is a prerequisite for an understanding of “turbulence” 
on the lattice. Furthermore, some heuristic work of Izrailev and Chirikov [15] 
suggests that for a lattice it may be easier to achieve mixing of energy, or a 
“stochastic” condition, when the energy resides initially in the high-frequency 
linear modes. 

In Sec. II we treat opticaI-acoustic lattice motions in terms of a pair of partial 
differential equations, that is by a continuum description. The limitations of these 
equations to short times are discussed, and they are used to predict the generation 
of acoustic motions from purely optical initial conditions. In Sec. III a numerical 
solution of the lattice equations is discussed. It illustrates the generation and 
radiation of acoustic pulses from localized purely optical motions, and compares 
favorably with the analytical results of the continuum description of Sec. II. 
In Sec. IV the effect of increasing the relative size of nonlinear forces is described. 
We were surprised to find a qualitative departure from small nonlinear behavior- 
three-curve states were radiated by initial optical excitations. That is, in these 
states or packets the motion of every third particle is strongly correlated and, 
in effect, every third particle lies on a separate smooth curve. It is significant that 
for the times we consider, one finds a high degree of regularity in the motions yn , 
as seen through a persistence of one-, two-, three-, and higher-curve states. The 
final example of Sec. IV illustrates this case. A generalization of the continuum 
methods for two-mass systems is given in Sec. V. 

II. CONTINUUM DESCRIPTION OF OPTICAL-ACOUSTIC EXCITATIONS 
OF AN ANHARMONIC LATTICE 

The equations of motion of a lattice of particles whose Hamiltonian H is (1) 
can be written as 

(eY7z = (Yn,, - an + Y?Jl + 4Yn+1 - Yndl, 
(n = 0, l,..., 2N - 1). (2) 

Although we usually prescribe periodic boundary conditions (ysN = yO, etc.), 
this does not restrict the generality of our results as the periodic interval is larger 
than the initial length scales. 

If we normalize the length of the periodic lattice to 2.0, then the particle spacing is 
h = l/N. 
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The dispersion relation for the “corresponding linear lattice” (a = 0) (cf. 
Appendix 1.A) is 

wk2 = 4w2 sin2 
krr 

( ) 2N’ 
(k = 0, l,.,., N), 

and the mode k = N corresponds to a vibration at the lattice frequency 

It is common to analyze systems like (2) through representations involving 
interacting normal modes. These are obtained by spatially Fourier decomposing y, 
(Appendix 1.B). In the study presented below we prefer to use a continuum 
representation of the various dynamical states that arise. However, it is sometimes 
convenient to view the state of a system by giving the energy in the spatial modes 

Hk = HkL + HflTL, 

where H&L are the usually defined [5] “linear modal energies,” HNL are con- 
tributions from the nonlinear portion of (2), and H = Cf=‘=, Hk is a’constant of 
the motion. 

The optical portion of the lattice spectrum is excited if we displace particles 
alternately along two different smooth curves, as shown in Fig. 1. If we assume 

FIG. 1. Optical initial conditions. 

that the particle displacements remain on two smooth curves at later times, the 
degrees of freedom available to the system are reduced, and one can easily obtain 
a continuum description in terms of these curves. This is a good assumption when 
the nonlinear interaction potential energy is cubic and a poor assumption when it 
is quartic. We will discuss the latter case at a future time. 
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If we distinguish between alternate masses, as we would, e.g., if they were differ- 
ent (as described in Sec. 5), we can write the equations of motion corresponding to 
(2) as 

cc2tiii, = (zn+l - 2% + zn-,)[l + 4n+1 - G-1)1, n = 0, 2 ,..., 2N - 2, 
(4) 

(/Li - n- (%I+1 - 2~.~ + w+J[l + CX(W~+~ - w&l, n = 1, 2 ,..., 2N - 1. 

Here we denote the displacements y, by w, and z, for even and odd masses, 
respectively. We assume that w%(t) and zn(f) are discrete approximations to a pair 
of sufficiently differentiable functions W(X, t) and z(x, t) on the interval - 1 < x < 1, 
where x = -1 + nh. Denoting differentiation by a, , a, , etc., we may then 
write 

w,&, = w f ha,w + g a,2w f g a,% + $ a& + o(hy, n odd, 

and similarly for z,*,, . We then find the following system for w  and z: 

da,2w = 2 
( 
i + Ea,Z + T Ea,3z) (Z - W) + hyi f 

h* 
+ 12 63 + WEh4>, 

da,% = 2 i + Ea,W + T ra,%) (W - Z) + hyi 
( 

h4 

EagJ a,zz 

- Ea,w) a,2w 

(5) 

where E = 2orh. If higher order terms do not contribute significantly to the 
equations of motion (5), then w  and z are smooth curves, and these equations 
may give uniform descriptions of acoustic-optical lattice motions over long times. 
For example, if we consider only acoustical motions, then adjacent lattice points 
lie on the same smooth curve, or w  = z, and (5) reduces to the acoustic equation 
studied in [l]. 

To separate the motions more effectively, we rewrite (5) in terms of average 
(acoustic) and difference (optical) variables 

24(x, t) = w(x, t> + 4% t) w(x, t> - .4x, t) 
2 ’ 

21(x, t) = 2 
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Adding and subtracting the equations in (5), we obtain 

w-2a,2v = -4~ [i + Ea, (u + 4 az3.4)] - h2a,{a,v + l (a,24)(a,u)j (6A) 

- g a,*0 + O(ch4). 

(fm 
In the present paper, we examine the coupling between acoustic and optical 

motions governed by (6) in the interesting “intermediate” regime where 01 = 1, or 

E = O(h), 

that is, in terms of one dimensionless parameter. We restrict our investigation to 
times that are long with respect to optical time scales, t, = I/V, , but less than 
acoustic times, ta = 2/hw = 2/c. (Here, tA is the oscillation period for the lowest 
mode of the corresponding linear string, i.e., the lowest mode of the equation 
a+ = c2az3d). 

We assume a one-parameter ordering in which 

24 = E”U”, a,u = Em+na,lc 2 a,# = er a, ii 
and 

1 

v = Ew?,, a,v = l a 6 52 ' a,v = l p at,b, 

where x1 , x2 , t, and t, are new independent variables chosen so that E, E&u”, etc., 
all have magnitudes at most O(1). If we substitute these expressions into (6A) 
and (6B), omit constant multipliers, and treat h = O(E), then the exponent E in 
each term can be written as shown in Table I. A quick examination shows that 

TABLE I 

EXPONENTS OF c IN EQUATION (6) 

Term in 

(6) 1 2 3 4 5 6 I 
--~ 

A mf2r 1+2p+v 3+2p+3v 2+m+2n 3+2m+3n 3+2p+3~ 4+m+4n 

B PfaJ P 1+m+r+n 3+m+p+3n 2+p+2v 3+m+p+2n+v 4+p+4v 
3+m+p+n+2~ 
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there are many possible orderings that are consistent. We ask whether there is 
a consistent ordering which agrees with the results of numerical computation, 
namely an ordering where terms 1 and 4 of (6A) compete and where terms 1 and 2 
of (6B) compete. 

Table II gives the relations one obtains when certain terms compete (=) or 
are related by an inequality (<). Since n > -1, (f), then r > 0, a fact consistent 

TABLE II 

COMPETITION AMONG TERMS IN J!!Q. (6) 

Competition Inequality 

Al =A4: r=1+n (4 A3 < A2; A6 < A2; B5 < B2: v>-1 (d) 

Al 2 A2: 2r < 1 + 2p + Y - m (b) A5<A4;B3<B2: m+n>-1 (e) 

Bl E B2: p=o (4 A7 < A4: n>-1 (f) 

with acoustic phenomena evolving more slowly than optical phenomena [p = 0, 
(c)l. Substituting (a) and (e) into (b), and assuming ,u = m and v = n, we obtain 

1+n--m=lfv-p<o. 

We take v = - 4 corresponding to a localized optical pulse and thus: 

n=--Q, r=3, and P>Q. 

Hence to order c2 (6) becomes 

+ % a,p,p + 4 ~~+lw+v + (a,,m 

+ E $ ap + o(3), 

datlv” = -4qi + 6p+wazla) - E $f ail8 + o(s). 
(7) 

Normalizing the independent variables of (7) 

7 = 2wt, t = 244 
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we obtain 

&Q(l) - a&(*) = 24(4,), (84 

aT%) + w = 0, W9 

where we use the original dependent variables u and z, to first order. To this order 
the optical state drives the acoustic motion but there is no feedback from acoustic 
to optical. 

We shall use (8) to predict quantitative features of the acoustic state u generated 
by initial conditions for which only a localized optical state u is nonzero, for 
example, the Gaussian displacement of u illustrated in Fig. 1 and given by 

(9 

The parameter d, which determines the half-width of u in the original x coordinate, 
is typically taken as O(P) (localization). For short times, we may eliminate 
boundary considerations and assume an infinite line on which u and v decay 
exponentially at infinity. We will then be able to compare u and u with numerical 
solutions of Eq. (4) on the periodic lattice. 

Equation (8A) is an inhomogeneous wave equation for u(,) in terms of UQ) , 
and is easily inverted using the well known d’Alembert solution [16] 

where 

F(e + 7, t - 7) = m@ + 7 0) + a&! - ?o> + a$@ + T,o> - a&? - 7, o)]. 

We will be comparing analytically derived and numerically computed values of 
a,u, because they allow a more severe comparison. We adopt our small parameter 
7 as 

772 = a2 max([u(f, O)]” < 1. 

It arises naturally if one assumes 

(11) 

and also if one takes the ratio of the nonlinear-to-linear energies in (1) and replaces 
the differences y, - JJ~-~ by 2v. It is easily seen that the potential energy curve 
of adjacent oscillators gives rise to repulsive forces for values of 11 above 0.5. This 



134 ZABUSKY AND DEEM 

leads to exponentially increasing deviations or “runaway motions” of adjacent 
particles. We shall not consider such unphysical situations here. 

For 72 < 1, let us consider initial conditions where there are initial optical 
displacements and velocities 

G 0) = ~,a QGi-, 0) = ~o(O, 
(12) 

F(e + 7, q - T) = 0 (no initial acoustic state). 

The solution of (8B) is then 

W(E~ 4 = ~o(O cos 7 + G,(t) sin 7, 

corresponding to a linear lattice of independent harmonic oscillators. It follows 
from (10) that 

+(&, T> = +o”(t + 7) - 2[v,(t3 COS T + &(t> sin T12 + uo”(t- - T)> 
-a 

I 
T {Sin 2U [Uo2(( + 7 - u) -t uo2(( - 7 f U) 
0 

- 602(f + 7 - U) - do2([ - 7 + U)] 

- 2 COS 2U [Uo([ + 7 - U) fi,(e + 7 - U) 

+ uo(!f - 7 + 0) f&t - 7 + a)]> da, 

where we have integrated by parts once. 

(13) 

In Appendix II we derive properties of (13) in several limiting cases. For 
example, if the initial conditions are given by (12) and if vo(Q and fi,(~) are suffi- 
ciently smooth, have extrema at [ = 0, and if they tend to zero sufficiently rapidly 
as 1 t 1 becomes large with respect to the width of the initial condition (the param- 
eter /3 = 2A/h cc E-I/~), then 

@(,)(& 7) I+ = ; [h2(o) + floz(o)] + 0 (+)> (14) 

when T  > B, that is, long times. In Eq. (14), we follow that portion of the acoustic 
pulse at 5 = 7 which moves with unit velocity from the origin, f = 0. Further- 
more, assuming conditions on uo(.$) and Go([) as above we also derive the form of 
the nonpropagating portion of (13) (which remains in any finite &interval near 
5 = 0 as 7 --+ co) as 
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where 

and 

qs>, qn = 0 (S). (17) 

The acoustic state in (15) has a negligible oscillation about a mean value C’(f). 
The limit in (15) is uniform in any fixed, bounded &interval. 

III. COMPARISON OF ANALYTICAL/NUMERICAL COMPUTATIONS 

A. GENERATION OF ACOUSTIC (ONE-CURVE) STATES FROM OPTICAL INITIAL 
CONDITIONS, v  < 1 

To compare quantitatively the continuum formulation of Sec. II with numerical 
solutions of (4), we choose lattice initial conditions w,(O) and z,(O) for which there 
is no initial acoustic motion 

~~(0) = 5 exp [-(+)“I, n even, 

z,(O) = -5 exp [-(s)l], n odd, 

tin(O) = ~JO) = 0. 

We impose periodic boundary conditions, as usual. For the example of Fig. 2, 
N = 200, CY = 1, LI = 0.106, and 6 = 0.0175, corresponding to a nonlinear 
strength 

7) = ora = 0.0175. (19) 

In the ordering scheme of the previous section, this corresponds to p = 1 in 
Eq. (7). 

In Fig. 2 [first column, (a)] we have plotted at three different times the numerical 
differences for the w  and z curves, namely 

6,w, = wn+1 - "n-1 
2h ’ n = 1, 3,..., 2N - 3 

azz, f za+l ; zm-l ) 
(20) 

n = 2, 4 ,..., 2N - 2. 

For comparison, we have plotted in column (b) the corresponding average, or 
acoustic state a&(x, t), which is computed here by taking an average of the third- 
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FIG. 2. Generation of an acoustic state from optical initial conditions (7 = 0.0175, N = 200, 
4 = 0.106). 
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degree polynomials interpolated through four adjacent points of the S,w, and 
6,z, functions, respectively; that is 

n even 
(21) 

+ ~w?z-I) - @%a+2 + ~%a19 n odd. 

In the presence of two-curve states only, (21) is a good approximation to the 
continuum function a,u, with u as defined in the previous section. The last column 
of Fig. 2 gives logarithmic plots of the modal energies (defined in Appendix 1.B). 
At wt = 0, we see that the excitation is confined to the high wavenumber modes. 
At cot = 40, we observe the formation of an acoustic state with a corresponding 
buildup in the low wavenumber energies. 

At wt = 100, corresponding to 0.25 linear period (31.8 optical periods), two 
acoustic pulses have propagated away from the optical state, which then remains 
localized and vibrates nearly at the lattice frequency, w/r. The ratio of the energy 
in the acoustic part of the spectrum to that in the optical part of the spectrum is 
or9 = 3.06 x 10-4. Except for a slow spreading of the optical state, this qualitative 
situation persists for two linear periods of 255 optical oscillations, that is, even 
when the propagating pulses return and interact with the central state (due to the 
periodic boundary conditions). 

B. COMPARISON WITH THE FIRST-ORDER CONTINUUM DESCRIPTION 

For the initial conditions given in (18), the corresponding continuum initial 
conditions are 

u(x, 0) = B exp [-($-)“1, 

(22) 
Ut(X, 0) = u(x, 0) = Ut(X, 0) = 0. 

If fi = 2d/h > 1 and wt > p, we have from (14) 

bdx, 0 L-et = NaiP [I + 0 (+)I M 0.06125, 

where we recall that 5 = 2x/h = 2Nx. This agrees with the height of the indicated 
pulse in (iiib) of Fig. 2 to within 0.25x, the approximate accuracy of the numerical 
calculations (Appendix III). 
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Furthermore, the value of a,~(,) at the origin is given by (15-17) as 

q&4(,)(X, t) Iz=o = -2NcXG-2 1 + 0 -L- [ ( is2)] m -0.1225. (24) 

In Fig. 3, we compare (13) (dashed line) with the numerical results for this case 
(solid line). Figure 4 gives the difference between Eq. (13) and a,zZ (Fig. 2, iiib) 
at cot = 100 (0.25 of a linear period). The numerically computed minimum at 
the origin has risen to a 4.5% disagreement with (24), because of the continued 
interaction of the acoustic and optical state (which slowly spreads into the lattice). 

If one allows nonzero initial optical velocities the results are essentially the same 
except that wave shapes are altered. 

-1.0 

b,i (o,t) 

2Nai2 

I00 200 
a 

FIG. 3. Comparison of the acoustic states at x = 0, as derived from the continuum analysis 
(13) and from the numerical computations (21) (N = 200). - - - Eq. (13) (A = 0.106); - Eq. 
(21) (7 = 0.0175, A = 0.106); ---- Eq. (21) (7 = 0.163, A = 0.1); -. - Eq. (21) (7 =0.326, 
A = 0.1). 
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FIG. 4. The difference: (a,C - EJ,zq1))/2NaBs at wt = 100, as derived from (21) and 
(7 = 0.0175, N = 200, A = 0.106). 

IV. LARGE NONLINEAR EFFECTS; GENERATION OF “MULTI-CURVE" STATES [17] 

The examples of the preceding section show that for values of 7 less than 0.1 
a two-function continuum description can be used to describe the dynamics of 
a lattice with optical initial conditions for moderate time intervals. As q is increased 
beyond 0.1, we observe a qualitatively different lattice motion, namely, the presence 
of three-curve states. That is, every third particle of the lattice lies on a separate 
smooth curve. To describe successfully such phenomena, even for short times, 
would require a continuum description involving the interaction of one-, two-, 
three- and possibly higher-curve states. 

The results of Fig. 5 are obtained with 7 = 0.163, N = 200, d = 0.1 corre- 
sponding to p = 4 in (7). We have plotted a,zi and observed that the two radiated 
acoustic pulses still have heights which are predicted by (23) to within about one 
percent, namely, 

a,qx, t) 1 2q-ct = 5.37 
wt=100 
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and 

%%,(& 0 Ied = t-m 
5.31 + 0 (-+ 

5.0-- 
a,ii 

I 
-f.O 

i 
1.0 

X---c 

0) w t alO0 (0.25 Linear Period, 31.6 Optical Oscillations) 

IO. c IO. c ,-- 
a2 

5.0 5.0 

Three -Curve Three -Curve 

b) wt = 200 (0.50 Linear Period. 63.7 Optical Oecillatione) 

FIG. 5. Formation of Wee-cum e states (r, = 0.163, N = 200, A = 0.1). 
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These radiated fronts are hardly affected by the deviation of the optical state 
from a simple harmonic oscillation. However the central acoustic state differs 
considerably from &,JQ after several oscillation periods t,, , as shown in Fig. 3, 
so that a(,) gives a valid approximation to v only for very short times. In Fig. 5a 
at cot = 100 (0.25 of a linear period), the minimum value of the acoustic state at 
x = 0 is less than 50% of that given by (24). In Fig. 5b at wt = 200 (0.5 of a linear 
period), the value of a,~? has fallen to 25% of (24) as a result of the “spreading” 
of the central region and the generation of three-curve states. These states propagate 
with a group velocity of approximately c/2, corresponding to a pulse whose mean 
wavenumber is k = 2N/3. 

In Fig. 6 we have given plots of the modal energies. We note that for wt = 100, 
0.310 of the total energy H resides in the midmodes, k = 20 to 180. rJThis compares 

10-l - 
0.1 WI = 100 (0 25 Linear Period) 

10-Z - 
A= * 

- . 
. 

lo-’ -:* 
. 
. 

lo-*- ‘: 
. 

0, f  
.  

.  :  

,dJ I  I  I I I  I  .  I  I  I  I  , : ,  I  I  I  ,  I  

0 50 100 150 200 

MOOE NUMBER 
loo- 

10-l _ b) w t--200(0.50 Linear Period) 

- 

?I= 
IO“ - 

. 
l Z 

lo-’ - , 

l . 

lo-- , 
. 

. 
l *. 

lo-” 8 l * a ’ r ’ * 1 ’ ’ 

0 50 100 150 200 

MODE NUMBER 

FIG. 6. Modal energy spectrum (7 = 0.163, N = 200, A = 0.1). 
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with 0.36 x IO-” of H in the midmodes at wt = 100 for the q = 0.0175 case 
(Fig. 2)]. We also note that after wt = 100, the energy per mode remains less 
than 10e5 of H in the region 20 < k < 125. Since an M-curve system will corre- 
spond to energy in modes centered about k = 2N/M, we therefore expect two- 
and three-function continuum descriptions to be adequate for describing lattice 
motions in the present case. 

For our final example, we double the nonlinearity parameter to 7 = 0.326, 
keeping N = 200, d = 0.1. The motion becomes much more complex in this 
case, consisting as usual of two propagating acoustic fronts which, however, do 
not separate from the oscillating central regions before encountering the bound- 
aries, as they did in Fig. 5. In Fig. 7 we show a&, from (21), vs x at a time wt = 200 
(0.5 of a linear period). The initial conditions are identical in form with those of 
the previous example, with their amplitudes doubled. We have produced a com- 
puter-generated film [17] for this case and have observed: 

(a) In a very short time (a few optical oscillations to) the Max 1 6,w, 1 and 
Max 1 6,z,, 1 grow considerably, but are quickly bounded as energy flows away 
from the central region via the acoustic fronts. 

(b) The energy in the acoustic regions is sufficiently large, that one can see 
them steepen as they propagate away; that is, “shocks” are in the process of 
forming. 

(c) In the spatial region between the acoustic and optical states, we see large 
amplitude three- and four-curve states. In Fig. 7, for the sake of clarity, we have 
drawn smooth curves through sets of points that have correlated motion. The 
three-curve states, for example, are observed to propagate with a velocity of 
approximately c/2. 

(d) For times greater than half a linear period, when the periodic boundary 
effects give rise to more complicated motion, we still see many regions where 
there is correlated motion among groups of particles, including the four- and 
even five-curve states! Thus, the lattice does not seem to exhibit a truly random 
motion on these time scales. 

This latter conclusion was somewhat contrary to our expectations, although 
it is analogous to the results of Fermi, Pasta, and Ulam [5] in the case of low 
amplitude, acoustic initial excitations. In Fig. 8 we show the evolution of the 
modal energies. At cot = 0 the energy resides in the highest optical modes; after 
0.05 of a linear period (6.4 optical oscillations), Fig. 8a shows the rapid cascade 
of energy to the low end of the spectrum, together with a rising importance of 
many central modes. Very soon afterwards, we reach a state whose average features 
are exemplified by Fig. 8b (0.5 linear period). At this time 0.558 of H has been 
transferred to the central modes (20 < k < 180). At later times, one sees only 
small energy fluctuations about this nonuniform spectrum, indicating that our 
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FIG. 7. Regular features in a strongly nonlinear example (v = 0.326, N = 200, d = 0.1). 

system does not reach a state of equilibrium having equipartition of energy among 
the various modes. This undoubtedly is due to the coherent states that we observe 
in Fig. 7. In Fig. 8b we have indicated those regions of the spectrum that would 
be occupied by one-, two-, three-, etc., curve states. 
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FIG. 8. Modal energies for strong nonlinear excitations (7 = 0.326, N = 200, A = 0.1). 

In Fig. 8b we have also indicated a dotted line, below which fall the absolute 
values of all nonlinear contributions to the modal energies, according to our 
definitions of Appendix I.B. As can be seen, all but the least energetic modes 
agree to well within 10% of their linear modal energies HkL. Thus, the linear 
modal energies still give a qualitative measure of the state of excitation of each 
mode. 

V. GENERALIZATIONS 

Until now we have restricted ourselves to the specialized Hamiltonian (l), 
with corresponding equations of motion (2). We should emphasize that the con- 
tinuum viewpoint for multifunction systems is applicable to more general 
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situations, for example, nonnearest-neighbor interactions and damping, i.e., 
velocity dependent terms, in (2). 

We conclude with the generalization of (6) and (8) appropriate to a lattice for 
which even and odd particles have different masses m, and mz , as for example in 
a crystal of sodium chloride. In this case the distinction between even and odd 
particle displacements is somewhat more natural than before; a two-curve 
description is needed, even in cases where the particles are initially displaced 
along a single smooth curve. We denote 

a1 - 2 = K/m, ) I%,2 = K/rnz, co2 = i3,B, ) 

u = G,/i3, = (ml/m2)1J2, 

where K again denotes the linear spring constant. Let W(X, t) and Z(X, t) again 
denote continuum curves along which lie even and odd particle displacements 
w,(t) and z,Jf), respectively. The equations of motion for w, and z, are similar 
to (4), except that we must replace m-2 by ~55;’ and ~5;’ in the first and second of 
these equations, respectively. 

In Appendix 1.A we give the corresponding dispersion relation for the linearized 
lattice equations. The acoustic and optical branches are distinct, except in the case 
G = 1, where (3) applies. 

The generalization of (6) is found to be 

w-q% = 45&d, v) [S + d, (v + 4 ae2v)] 

(25) 

- ; 8s4v + O(eh4), (26) 

where 

and 

U= G,w + c,z 
v= 

i&w - i&z 
6, + is, ’ 62 + 6, 

S,(f,d = q- [(i- l)f+ (i+ $1. 
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Corresponding to (8), we expect a short-time description of the optical-acoustic 
interactions to be given by 

4%) - a1%,) = ( 5; + 4aQM) 5,hl) , U(l)) 

&2w + 50(%, 3 w) = 0, 
(27) 

where the [, T coordinates are defined in (8). For example, (27) follows from the 
ordering hypotheses in Sec. II if we impose the additional requirement that 

u = 1 + O(0), y > 0. 

If u # 1, we observe that the u motion is driven by an additional term u(,) a,~(,) 
and the u and u motions are coupled, even in the case 01 = 0, and u is no longer 
harmonic. Thus, one might conjecture that there would be an increased tendency 
for the modal energies to relax toward a state of equipartition. This case warrants 
further study. 

VI. CONCLUSIONS 

We have shown that a two-function or two-curve continuum description can be 
used to describe analytically the dynamics of equimass, anharmonic lattices 
excited by weak, localized, optical initial states. As the strength of the excitation 
is increased, the two-curve description breaks down, and one sees multicurve 
states (in the numerical computations) radiated from regions containing one- 
and two-curve states. For very strong initial optical excitations, the multicurve 
states persist and the motion seems far from random. 

These results are also indicative of the trouble that can arise in the numerical 
simulation of continuum phenomena. The process of discretizing a continuum 
is equivalent to setting up a lattice to represent the continuum. We observe that 
if nonlinear processes cause energy to flow to the high wavenumbers, then because 
of the discrete nature of the lattice this energy can be fed back to the low wave- 
numbers that we are in fact trying to simulate. This “aliasing” [18] error has been 
treated quantitatively in this paper for a one-dimensional problem when the 
optical energies are small. 
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APPENDIX I. DISPERSION RELATIONS AND SPECTRAL DECOMPOSITION 

A. Lattice Dispersion Relation 

Let us consider a one-dimensional chain of 2N particles, periodically extended, 
in which even particles have mass m, and displacement w, and odd particles have 
mass m2 and displacement z,, . The equations of motion are 

w-2 . . 
Wl *VI = zn+1 - 2w?l + G-1 , n = 0, 2 ,..., 2N - 2, 

6-22 2 n= wn+1 - k + wn-1 2 n = 1, 3 ,..., 2N - 1, 

where 6r2 = tclm, , 822 = K/m2 and K is the spring constant. To determine the 
dispersion relation wk associated with mode k, set 

w2* = a, exp i H 2nkr 
- - 

N 
w  t )I k > 

z2n+l = a2 exp i [( (2n + 1) kr _ w t 
N k )I 

for n = 0, l,..., N - 1. We then find [7] 

wk 
2- - 6312 + G,2 rfr 

( 
6314 + i3,4 + 2&2G22 cos - . 

For the equimass systems to which we have restricted ourselves in this paper, 
9 
“2=& 22 = w2 and the above becomes 

k = 0, l,..., ; , (28) 

giving the acoustic, or low-frequency, branch and the optical, or high-frequency, 
branch respectively. In this case, the optical branch can be considered as an 
extension of the acoustic to N/2 < k < N. This convention was used for con- 
venience in plotting the modal energy diagrams of Figs. 2, 5, 7 and 9 [e.g., k = N 
in these diagrams actually corresponds to the k = 0 mode of the optical branch 
in (28)J If G1 f G, the optical and acoustic branches are separated by 2(i3r2 - i;i22) 
at k = N/2. 
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B. Spectral Decomposition of Periodic Lattice Displacements and the 
Nonlinear Modal Energies 

To make precise our definition of “modal energies,” especially for the nonlinear 
equimass Hamiltonian H in (I), we take a spatial spectral decomposition of y,,(t) 

ak(t) = &*~ydt)sin$, 
(29) 

b,(t) = &2~y,(t)cos~, k = 0, I ,..., N. 

These can be inverted according to 

1 
YnW = p 2 1’ [b, + (-l)%,] + r$: (ab sin % + b, cos %)I. (30) 

If we substitute (30) and its time derivative into (1) and rearrange terms, we 
find that 

H = 2 (HkL + HfL) E 2 Hk , 
k=O k=O 

(31) 

where for k = I ,..., N - 1, wk = 2w sin kr/2N, 

and 

HkL = u-2 
2 [t&k2 + hk”) + wk”@k2 + bk% (32) 

HNL = k E y (~k~,,,~k+,Ka~m - bd,) aktm f &A + Jw,,J b-+c-tml 
,, wv’2 m-1 

+ 2%wN+#N-k--m[(akaN--m f bkbN.-d aN-k-m 

+ b&v-m - bN-m) bv-k-ml) 

WkWN-kfmWN--m cc akbN-k+m + b@N-k+rn , ‘b N+ 

- b&N-k+m - h&V-k+d aN-& 

For k = 0 and k = N 

HoL z $ doa, H$ = q (6,’ + w$bN’), H,“” = 0, 

(33) 
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and 
-3 N-l 

@L = OLw 
- %d'iv c %#JN-&maN-m + Gzhn,). 6(N)1/2 m=1 

The choice (33) also preserves the property that 

H =HL=HNL=O k k k 3 if ak = bk = 0. (34) 

The energies Hk are no longer necessarily positive, nor indeed is the total energy H 
for all possible initial conditions. 

The nonlinear contributions to the energies serve to couple the linear energies 
(32), so that except for 01 = 0 they will no longer be constants of motion. Due to 
the lack of uniqueness in writing down (33), it is not very instructive to consider 
the energies H* except in cases where they differ only slightly from their linear 
contributions HKL. For the examples of Sec. III, the ratio 

(35) 

remains well below lx, except for the very least excited modes. Even for the final 
(highly excited) case of Sec. IV, the ratio (35) eventually remains less than lo%, 
except for the least energetic modes. 

The equations of motion (2) in modal form are written below for reference: 

where the V$ffi, are polynomials in the wr . For example 

’ [(l + 8k.0)@k.m+n - sk.,N-m-n> 

+ (1 - 6k,N)@k,m-n + sk,-m+n)l 

for 1 < m, n < N - 1 and 0 < k < N. a,,,, denotes the Kronecker delta. 
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APPENDIX II. ASYMPTOTIC BEHAVIOR OF THE ACOUSTIC STATE FOR LARGE TIMES 

Let y,(t) = g(c//3), where /3 is a large parameter (/3 E 2d/h w  40 in the examples 
of Sec. III), and where g has two integrable derivatives and an absolutely integrable 
third derivative. Integration by parts then gives 

where a prime denotes differentiation with respect to the argument. The last line 
follows by noting that 

1 fm g”(u) e2@& / = 1 - &g” ($) - & ,I, g”‘(u) e2@du 1 
AlB 

d & [ma% I g”(t) I + jr I g”‘(u) I do]. (38) 

In order to examine the properties of a6u(,)(t, T) for T large, we write (13) as 

- sin ai! + 7) j:‘Tbo2(U) - 2 4 ( u >) cos 20 + 2q,(u) do(u) sin 201 da 0 

f  sin % - T, ji- [(u$(d - 8 0 2 ( u )> cos 20 - 2u,(o) 4(u) sin 2u] da 
T 

+ cos 2([ + T) jr’ [(uo2(u) - 6,‘(u)) sin 20 - 2v,(u) Go(u) cos 201 da 

- COS 35 
- 

d ,I- kJo"(u> 
- 2 o . 

7 6 ( u >> sin 2u + 20,(u) e,(u) cos 2u] do t 

(39) 

Consider first the behavior of (39) at a point 5 = X + 7, where h is held fixed; 
that is, we follow the acoustic pulse which originates at f = A, as it moves toward 
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positive .$ at the “sound speed” of (8A). If u,,~(.$) - Go2([) and o,,(c) d&) satisfy 
the conditions on y(t) in (37), then as T -+ co, 

~P(d5~ T)le=A+s 

+ a !uo2(h) + sin 2h 1: [(uf(u) - Go2(a)) cos 2a - 2u,(a) i,,(u) sin 201 da 

- cos 2X 
s 

T [(u:(u) - i:(u)) sin 2u + 2v,(u) e,(u) cos 201 du/ 

= ;mo2t4 + ~020>l + h(a 6lG91’~ + 0 (#Y (40) 

uniformly in any fixed, bounded h-interval. In particular, (14) follows if q,(t) and 
G,-,(& have extrema at .$ = 0. 

Consider now the behavior at a fixed point 5 as T + co. Let v,(.$) and 6,(,$) 
have properties as before. From (39) it is clear that as T becomes large, acu(,) takes 
the form 

a$&, 7) - 2%) + &,(t) COs 27. + 42)(t) Sin 27. 

This limit is uniform in any fixed, bounded &interval, where specifically 

u’(t) = -4~o”(O + ~c12~Ol, 

~X!t7 = 451t~02 - go2 ; 0 + zY,w, ; m, 

at3 = 4xm,43 ; 0 - 52h2 - 405 01. 

Here we denote the functional forms 

(41) 

(42) 

(43) 

(44) 

From these representations (43) and (44) we have that the time oscillations in (41) 
are negligible, since U; and ~6 are both O(fi-z). For example, 

&(y; 6 = sin 2t Irn [da) + y(-a)1 cos 2do 
0 

- cos 25 1: [y(u) - cp(-u)] sin 2udu - y(f) 

- 2 sin 2f sy p(u) cos 2udu + 2 cos 2.$ sy F(U) sin 2udu 

= 0 (-$), (45) 
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which follows after several applications of (37) with X = 0 or 5. A similar argument 
holds for &(p); e). 

APPENDIX III. NUMERICAL PROCEDURE 

The difference scheme used in Sec. III and IV in connection with (2) was 

Y *j+l = 9,j + co2 * my;+, - 2Y,i + Y&,)[l + 4Y;+l - Y,‘-,)I 

vi,” = ynj + At * j;+1, n = 0, l,..., 2N - 1, 

where d t is the time increment in going from level j to level j + 1. Periodicity was 
always enforced at the boundaries: 

Y’,, = Yo39 etc. 

Since H is a conserved quantity for the exact Eq. (2), its evaluation from the 
above scheme serves as a check on the numerical integrity. In the examples of 
Figs. 2,6 and 8, wdt was chosen small enough that the variations in H from its 
initial values never exceeded 0.25%. For this purpose it was necessary to use in 
excess of 785 time steps per natural oscillation period vi’. The example of Fig. 5 
was somewhat less accurate; energy variations were as high as one percent. A typical 
calculation (with microfilm output) carried to 0.5 linear period using 400 particles 
(N = 200), takes 0.4 hour with the IBM 7094 computer. 
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